Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms
نویسنده
چکیده
Stochastic Galerkin methods have become a significant tool for the resolution of stochastic partial differential equations (SPDE). However, they suffer from prohibitive computational times and memory requirements when dealing with large scale applications and high stochastic dimensionality. Some alternative techniques, based on the construction of suitable reduced deterministic or stochastic bases, have been proposed in order to reduce these computational costs. Recently, a new approach, based on the concept of generalized spectral decomposition (GSD), has been introduced for the definition and the automatic construction of reduced bases. In this paper, the concept of GSD, initially introduced for a class of linear elliptic SPDE, is extended to a wider class of stochastic problems. The proposed definition of the GSD leads to the resolution of an invariant subspace problem, which is interpreted as an eigen-like problem. This interpretation allows the construction of efficient numerical algorithms for building optimal reduced bases, which are associated with dominant generalized eigenspaces. The proposed algorithms, by separating the resolution of reduced stochastic and deterministic problems, lead to drastic computational savings. Their efficiency is illustrated on several examples, where they are compared to classical resolution techniques.
منابع مشابه
A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملA generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations
We propose a new robust technique for solving a class of linear stochastic partial differential equations. The solution is approximated by a series of terms, each of which being the product of a scalar stochastic function by a deterministic function. None of these functions are fixed a priori but determined by solving a problem which can be interpreted as an ”extended” eigenvalue problem. This ...
متن کاملStochastic subspace identification via “LQ decomposition”
A new stochastic subspace identification algorithm is developed with the help of a stochastic realization on a finite interval. First, a finite-interval realization algorithm is rederived via “block-LDL decomposition” for a finite string of complete covariance sequence. Next, a stochastic subspace identification method is derived by adapting the finiteinterval realization algorithm to incomplet...
متن کاملSolving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods
Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the f...
متن کاملA Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems
We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017